

ORTO-FRUTTICOLTURA INNOVATIVA

NACFRUT 2016

www.ortofrutta.informatoreagrario.it

Concimazione fosfatica: agrotecniche e retrogradazione

Macfrut Rimini

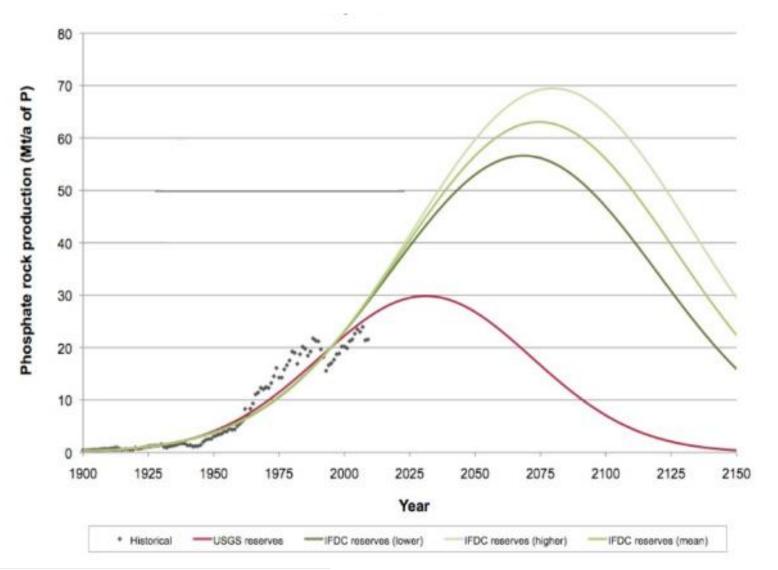
14 settembre 2016

Workshop

Giuseppe Ciuffreda

Funzioni e processi biologici e biochimici in cui è coinvolto il fosforo

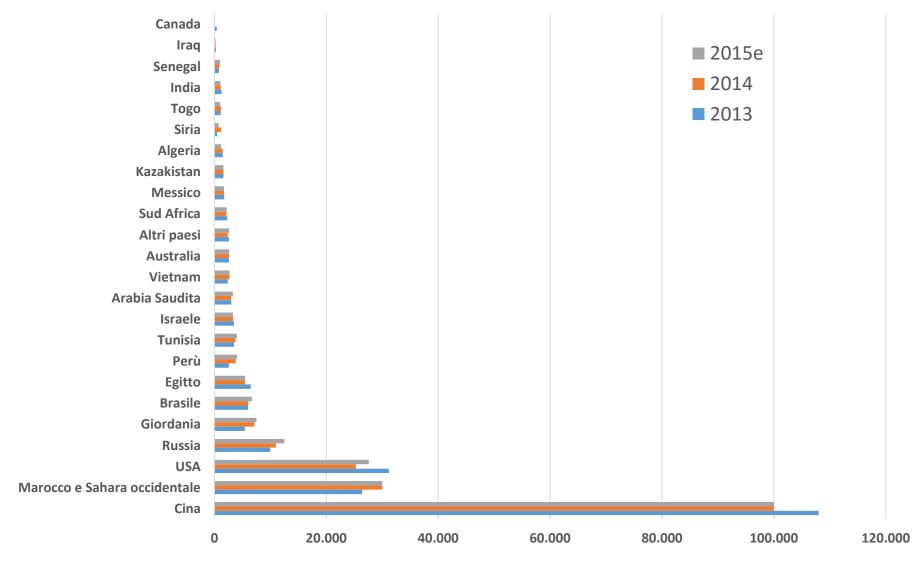
Il fosforo è essenziale per la nutrizione delle piante	Il ruolo del fosforo da nutriente essenziale per l'alimentazione animale/uomo
È assorbito per lo più come fosfati (H ₂ PO ₄ e HPO ₄)	È una componente importante delle ossa, dei denti e del DNA
È coinvolto nella fotosintesi, nel trasferimento di energia e nella divisione e allungamento cellulare	È importante per gli animali che allattano
È importante nella formazione delle radici e crescita	Fosforo e calcio (Ca) sono strettamente associati nell'alimentazione degli animali
Migliora la qualità di frutta e verdura	È essenziale per il trasferimento e l'utilizzo dell'energia (ATP)
È di vitale importanza per formazione dei semi	
Migliora l'uso dell'acqua	
Aiuta e accelera i processi di maturazione	



Fosforo è una risorsa non rinnovabile (10-15 milioni di anni per formarsi)

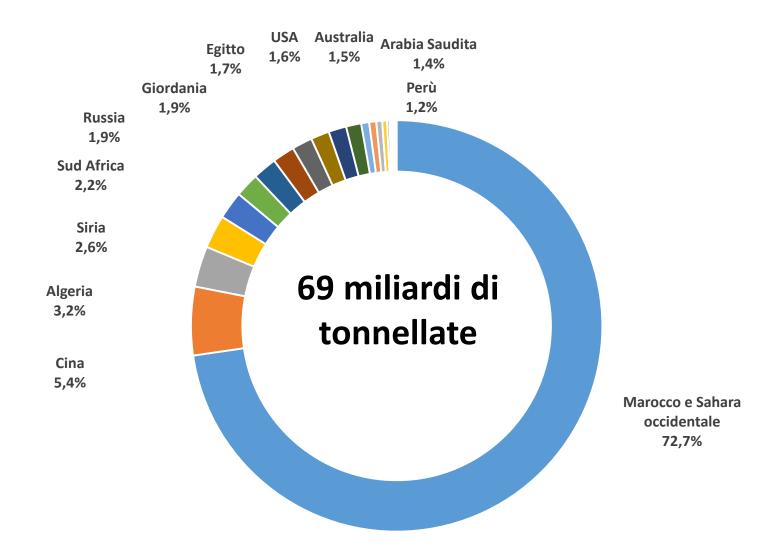
- La longevità delle riserve di fosforo è molto dibattuta
 - varia da 30-300 anni a seconda delle ipotesi, del tasso di consumo, della concentrazioni di P e della validità economica nell'estrazione¹
- La stima sulle risorse mondiali di roccia fosfatica è di 300 miliardi di tonnellate
- La stima delle **riserve** economicamente utilizzabili per il 2015 è stata di 69 **miliardi** di tonnellate
- La stima di produzione/consumo per il 2015 è stata di 223 milioni di tonnellate

Picco della produzione di fosforo scenario

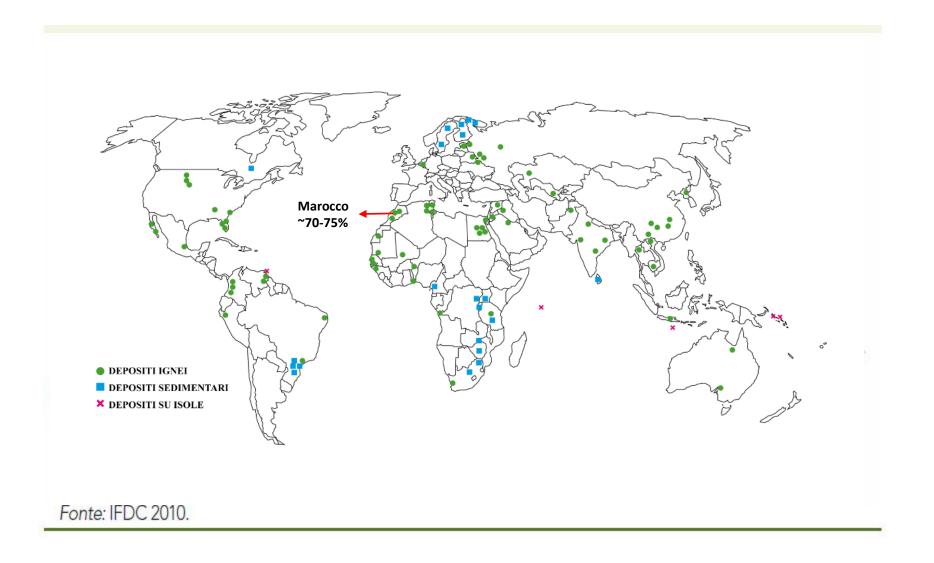


Cordell et al, 2009; 2011

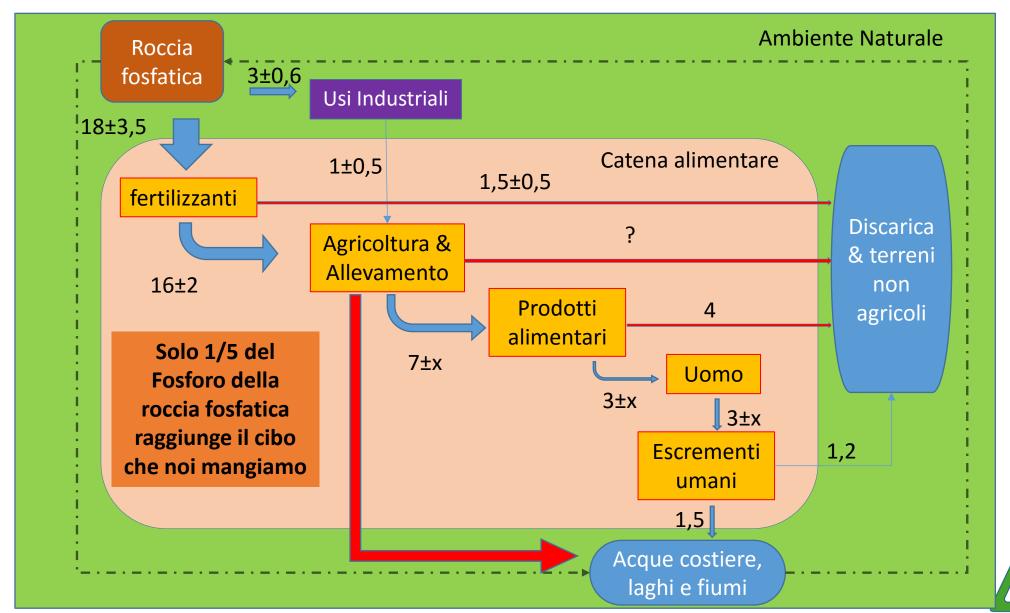
AGRONOMO CIUFFREDA GIUSEPPE


Figure 1. Peak phosphorus curve, indicating that production will eventually reach a maximum, after which it will decline. Red line indicates the original 2009 analysis based on USGS reserve data (Cordell, Drangert & White, 2009), while the green curves were updated with IFDC 2010 phosphate rock reserve data.

Produzione roccia fosfatica mondiale



Stima e Distribuzione Riserve di roccia fosfatica 2015


Depositi di roccia fosfatica a livello mondiale

Fosforo e l'intervento umano nel sistema alimentare globale

Milioni di tonnellate di fosforo (P) per anno

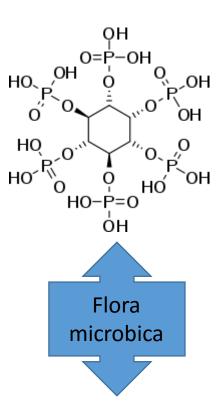
È necessario razionalizzare e migliorare l'uso del fosforo

- La domanda globale di fosforo al 2050 incrementerà del 50-100%
- Risorsa non rinnovabile in mano a pochi paesi
- Non possiamo produrre cibo senza Fosforo
- Unione Europea ha avviato una politica che tende ad incentivare l'economia circolare:
 - Una nuovo regolamento europeo sulla commercializzazione/produzione dei fertilizzanti è in iter di approvazione
 - Il riciclo degli elementi nutritivi presenti in tutti i sottoprodotti, scarti di lavorazione e reflui (animali ed umani) nel prossimo futuro devono rientrare nel processo produttivo del sistema agroalimentare.

Fosforo nel sistema suolo-pianta

Il fosforo è un macro elemento (come azoto e potassio) ma si comporta come un micro elemento perché:

- Le necessità nutritive della pianta sono elevate
- La sua disponibilità nel terreno è bassa
- La sua mobilità è scarsissima

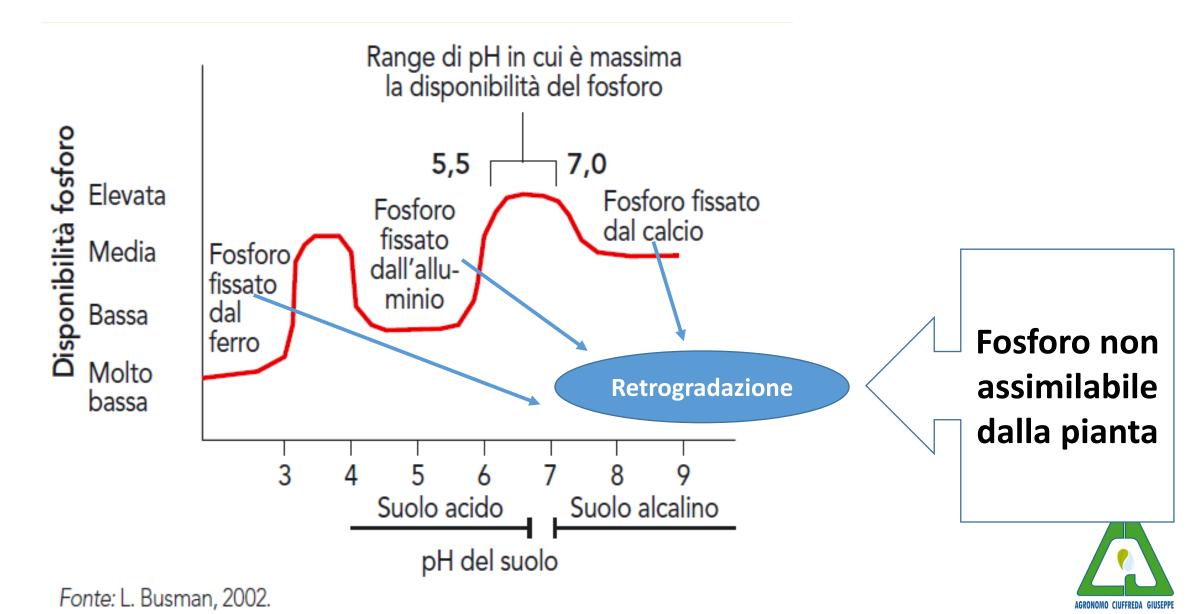


Fosforo nel suolo

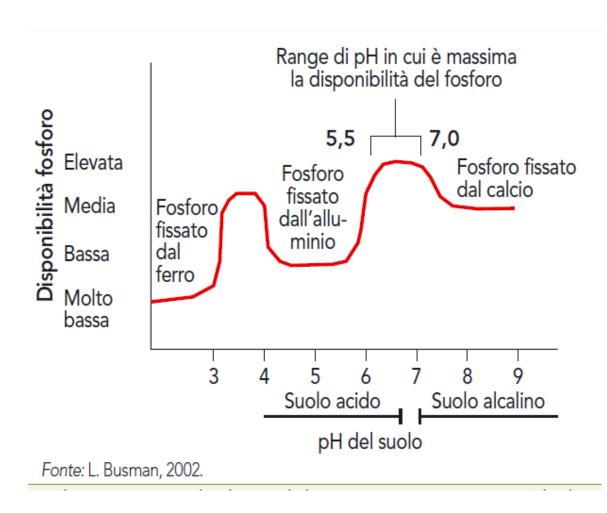
È presente in due frazioni principali:

- organica (FO)
 - Può variare 30-65% del totale. L'acido fitico (fitati) di solito è la sua componente più importante.

- minerale (FM).
 - può variare dal 35 al 70%. Rappresentate fino a 170 diverse forme chimiche di fosforo



Fosforo nel suolo


- minerale (FM).
 - Velocità di diffusione del fosforo minerale nel suolo 10⁻¹² 10⁻¹⁵ m²/secondo. Il Fosforo è **poco mobile** nel suolo (4-5 cm dopo applicazione di un fertilizzante granulare)
 - La concentrazione, delle due forme di fosfato assimilabile dalle piante $(H_2PO_4^{-2}e HPO_4^{-2})$, nella **soluzione circolante** del terreno raramente supera 0,32 mg/L (molto bassa).
 - La solubilità del fosforo è fortemente influenzata dal pH presente nel terreno

Fosforo nel suolo: Disponibilità al variare del pH

Fosforo nel suolo: analisi chimica

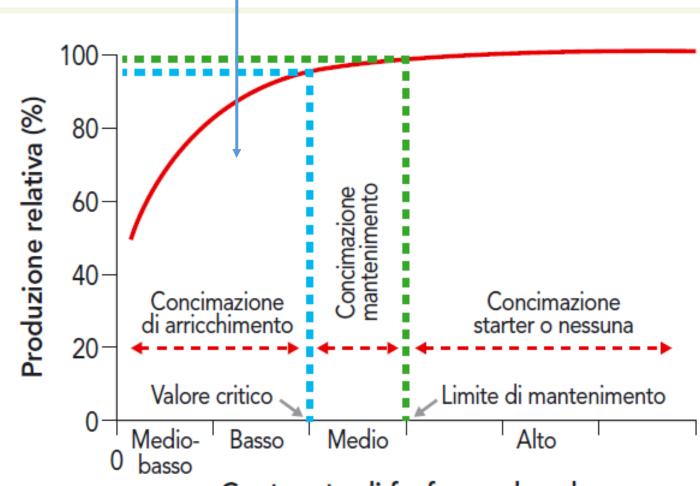
Per questo è fondamentale determinare il fosforo assimilabile:

cioè quel fosforo presente nel terreno in **Forma Solubile** e potenzialmente assorbibile dalle radici delle piante

Valori P (¹) (mg/kg terreno)	Valori P ₂ O ₅ (¹) (mg/kg di terreno)	Giudizio dotazione
< 5	12	Molto basso
5 10	12-23	Basso
10 15	23-35	Medio
> 15	35	Elevato

(1) Fosforo assimilabile.

In terreni in cui si riscontra un valore basso o molto basso è consigliabile eseguire una concimazione fosfatica di fondo

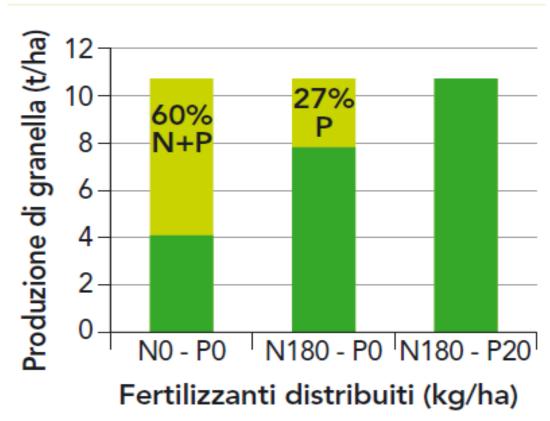


Concimazione fosfatica e risposta produttiva

Perdite del 15% per la soia e 20% per il mais.

Per grano, avena, erba medica e trifoglio fino al 40%.

Valori P (¹) (mg/kg terreno)	Valori P ₂ O ₅ (¹) (mg/kg di terreno)	Giudizio dotazione
< 5	12	Molto basso
5 10	12-23	Basso
10 15	23-35	Medio
> 15	35	Elevato
(¹) Fosforo assimilabile.		



Contenuto di fosforo nel suolo

Stewart et al., 2005 modificato da Ciuffreda.

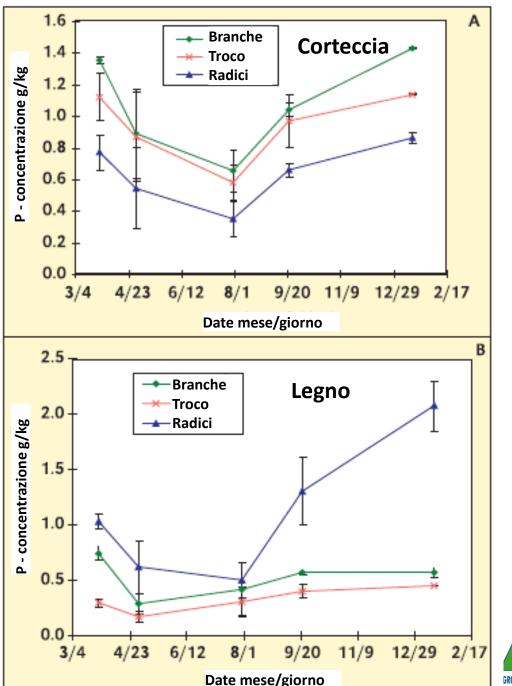
Sinergia tra concimazione azotata e fosfatica nel lungo periodo

Media di 40 anni di prove (1961-2000) su coltura Irrigata. Stewart *et al.*, 2005.

Fosforo nella Pianta

Adattamento in condizioni di carenza:

 Rilascio di essudati radicali (acidi organici e fosfatasi) in grado di abbassare il pH nella rizosfera (fino a due punti) e solubilizzare parte del fosforo presente nel suolo.


 Traslocazione dell'elemento da tessuti e organi ricchi a tessuti giovani in accrescimento

Fonte: ZIMMERMANN 1974

Fosforo nella Pianta

- È un elemento mobile facilmente traslocabile dai tessuti ricchi verso quelli di nuova formazione
- Il melo assorbe poco fosforo dal terreno in primavera e inizio estate
- Il fosforo necessario allo sviluppo vegetativo in questo periodo proviene da quello accumulato nella stagione precedente

Melo Var. Fuji

Fonte: Tong, Hongzhu 2007

Fertilizzanti fosfatici

I fertilizzanti a base fosforo possono essere:

- concimi minerali semplici (perfosfato triplo 46% o semplice 19%)
- binari (NP o PK) o ternari (NPK).
- minerali liquidi o polveri idrosolubili
- organo-minerali solidi o liquidi

Solubilità del fosforo

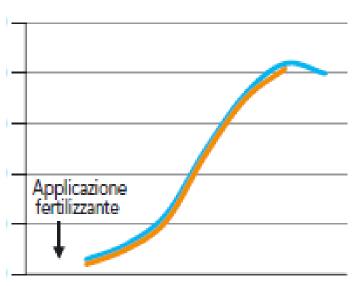
In base al dlgs 75 del 2010 e al regolamento europeo 2003/2003, a seconda della tipologia di fertilizzante, la solubilità del fosforo deve essere dichiarata in etichetta:

- solubilità in acqua (fosforo di elevata qualità)
- solubilità in citrato di ammonio neutro ed in acqua (buona qualità)
- solubilità in acidi minerali (scarsa qualità)

Roccia Fosfatica e fertilizzanti

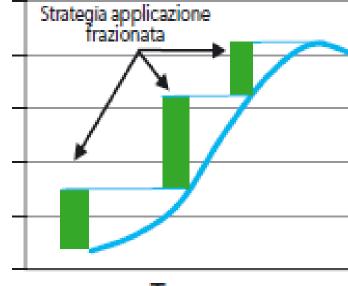
Contenuto di fosforo nelle rocce fosfatiche:

- Compreso tra 23-37% (P_2O_5)
- Poco solubile e poco disponibile per le piante


Come aumentare la solubilità del fosforo?

- Trattamento fisico macinatura fine (ammesso in agricoltura biologica)
- Trattamento chimico attacco con acidi forti (ac. Solforico, Fosforico o nitrico)

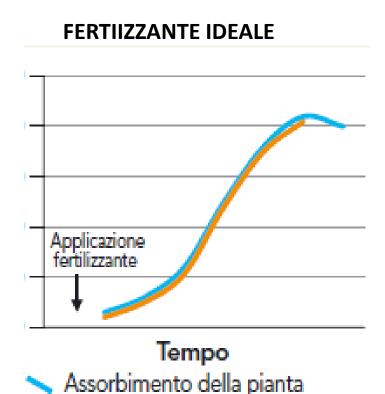
Fertilizzante ideale


FERTIIZZANTE IDEALE

Tempo

- Assorbimento della pianta
- Rilascio nutriente dal fertilizzante

DISTRIBUZIONE FRAZIONATA in copertura


Tempo

Assorbimento della pianta

- Nelle colture estensive i fertilizzanti fosfatici, visto la loro scarsa mobilità nel suolo, non possono essere distribuiti in copertura
- Vanno interrati per ridurre le perdite di ruscellamento
- Applicati alla tecnica della concimazione starter per ridurre retrogradazione
- Utilizzare fertilizzanti ad efficienza migliorata

Fertilizzanti ad efficienza migliorata

Rilascio nutriente dal fertilizzante

Sono fertilizzanti che rilasciano gli elementi nutritivi, in maniera graduale, durante il ciclo vegetativo in base alle esigenze nutritive della coltura.

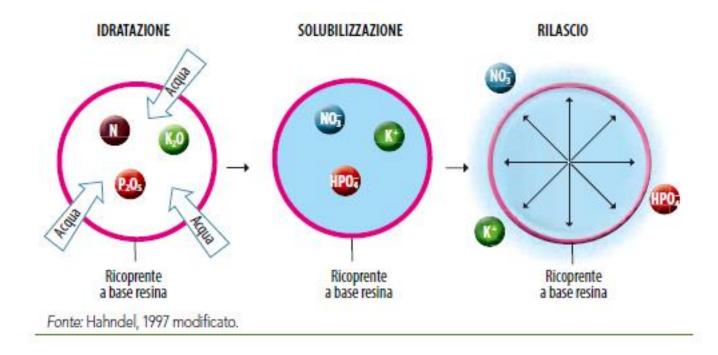
Fertilizzanti fosfatici ad efficienza migliorata

fosforo a lenta cessione (FLC);

fosforo a rilascio controllato (FRC);

• formulati attivati con microrganismi;

Fosforo a lento rilascio (FLR)


- Fertilizzanti organici (ammendanti, letami, ecc.)
- tutti i fertilizzanti **organo-minerali** ottenuti creando un'intima reazione tra frazione minerale fosfatica e componenti organiche (torba umificata, leonardite, idrolizzati proteici, compost, letame, estratti di acidi umici e fulvici)
- Polifosfati minerali che richiedono un passaggio graduale da una forma chimica non assimilabile ad una assimilabile

e rottura dei legami creati tra le due matrici a opera dei microrganismi

Fosforo a rilascio controllato (FRC);

Prodotti o formulati che hanno subìto un processo di ricopertura con materiali (polimeri sintetici o organici) in grado di contenere gli elementi nutritivi al suo interno e rilasciarli gradualmente nel tempo.

Formulati attivati con microrganismi

- Funghi micorrizici
 - Simbiosi mutualistica con le radici delle piante e incremento della superficie esplorata dalle radici grazie al supporto delle ife fungine

- Batteri
 - Capaci di solubilizzare il fosforo presente nel terreno e renderlo disponibile per le piante (es Pseudomonas Putida)

Fosforo: elemento spesso sottovalutato

- Ridotta redditività dovuta ai prezzi delle commodity agricole bassi
- Concimazione fosfatica trascurata per ridurre i costi
- Nel breve periodo nessuna riduzione della produttività

Ma nel lungo periodo?

è una strategia perdente che porta a un graduale deterioramento della fertilità del suolo, che può tradursi in perdite che vanno dal 27 fino a più del 40%.

Conclusione

È consigliabile una strategia di contenimento dei costi che sia figlia di un'attenta razionalizzazione delle risorse:

- Conoscere la fertilità dei propri terreni (analisi chimica)
- Scegliere il fertilizzante corretto (conoscere i fertilizzanti)
- Impiegarlo al momento corretto (conoscere la coltura)
- Distribuirlo alla dose nel posto più corretto (conoscere la coltura)

GRAZIE PER L'ATTENZIONE

giuseppe.ciuffreda24@gmail.com

Edizioni L'Informatore Agrario

Tutti i diritti riservati, a norma della Legge sul Diritto d'Autore e le sue successive modificazioni. Ogni utilizzo di quest'opera per usi diversi da quello personale e privato è tassativamente vietato. Edizioni L'Informatore Agrario S.r.l. non potrà comunque essere ritenuta responsabile per eventuali malfunzionamenti e/o danni di qualsiasi natura connessi all'uso dell'opera.